Trends and uncertainties in thermal calibration of AVHRR radiometers onboard NOAA-9 to NOAA-16

نویسندگان

  • Alexander P. Trishchenko
  • Gunar Fedosejevs
  • Zhanqing Li
  • Josef Cihlar
چکیده

[1] Satellite measurements from the infrared (IR) channels of the Advanced Very High Resolution Radiometer (AVHRR)/NOAA have been used to derive many important atmospheric, cloud, and surface parameters for weather prediction, climate modelling, and a variety of environmental studies. Calibration accuracy of the satellite data directly affects accuracies of the derived parameters. So far, very limited attention has been given to the calibration uncertainties of the IR channels. In this study, we analyzed the calibration data of AVHRR radiometers onboard polar orbiting satellites NOAA-9 to NOAA-16. We utilized Global Area Coverage (GAC) data, approximately one orbit per month throughout the lifetime of the instruments, available from the NOAA Satellite Active Archive (SAA). AVHRR IR channels 3B, 4, and 5 are calibrated in-flight. Calibration coefficients are derived from measurements of radiance emitted from an internal calibration target (ICT) and deep-space (SP). The overall budget of uncertainties has been evaluated using an in-flight calibration system that includes four thermal platinum resistance thermometers (PRTs) to monitor the ICT temperature. The measurement noise (NE T) was found to vary from 0.03 K to 0.3 K at 300 K depending on the channel and radiometer, and it increases significantly as temperature decreases. Systematic degradation of the radiometric sensitivity of the IR detectors was observed during the lifetime of a radiometer, although the annual rate of degradation is rather small (typically below 1% per year). A significant correlation between the calibration gain and temperature of a radiometer is often observed. The degradation of a sensor’s radiometric sensitivity reduces the radiometric resolution of the AVHRR measurements and expands the upper limit of the measured brightness temperature. PRT measurements are subject to significant orbital variation (up to 7 K) and inconsistency for some AVHRR radiometers. The inconsistency was especially large for the AVHRR onboard NOAA-12 (up to 4 K) and NOAA-14 (up to 3 K), but it is less than 0.5 K for NOAA-15 and -16. The inconsistency may signify the presence of a thermal gradient across the ICT. Some systematic differences between PRT measurements may also indicate inaccurate characterization of the PRT sensors, for example for AVHRR/NOAA-11 and -14. The impact of the varying thermal state of the AVHRR environment on the accuracy of AVHRR in-flight thermal calibration was assessed. We found this impact to be significant (up to 0.5 K and more), and proposed a physical model to explain it. We recommend this model for AVHRR operational in-flight calibration, especially during solar radiative contamination events. Estimates of the PRT thermal response time constant were derived and found to vary between 0.5 and 1.5 min among AVHRR radiometers. Overall, we found somewhat higher uncertainties in AVHRR thermal measurements than were assumed previously.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A method for the correction of AVHRR onboard IR calibration in the event of short-term radiative contamination

Abstract. We analysed the operational infrared (IR) calibration of the AVHRR radiometers onboard NOAA-12, 14 and 15 satellites. It was shown that solar blackbody contamination aVects the calibration of all IR channels. This source of error in the calibration may result in uncertainties in the estimation of sea surface temperature (SST) up to 0.5K or more. We propose an approach to correct this ...

متن کامل

Using Moderate Resolution Imaging Spectrometer (MODIS) to calibrate advanced very high resolution radiometer reflectance channels

[1] A series of 10 advanced very high resolution radiometers (AVHRRs) flown on National Oceanic and Atmospheric Administration (NOAA)’s polar-orbiting satellites for over 20 years has provided data suitable for many quantitative remote sensing applications. To be useful for geophysical research, each radiometer must be accurately calibrated, which poses problems in the AVHRR reflectance channel...

متن کامل

Effects of spectral response function on surface reflectance and NDVI measured with moderate resolution satellite sensors

We report the results of a modeling study on the sensitivity of normalized difference vegetation index (NDVI) and surface reflectance to differences in instrument spectral response functions (SRF) for various Advanced Very High Resolution Radiometers (AVHRR) onboard the National Oceanic and Atmospheric Administration’s (NOAA) satellites NOAA-6–16 as well as the Moderate Resolution Imaging Spect...

متن کامل

In-flight interband calibration on AVHRR data by a cloud-viewing technique

A significant degradation in the responsivity of the AVHRR radiometers aboard the NOAA satellite series, affects the index vegetation (NDVI), which is an important source of information for monitoring vegetation conditions on regional and global scales. Many studies have been carried out which use the viewing Earth calibration approach in order to provide accurate calibration correction coeffic...

متن کامل

Sensor Stability for SST (3S): Toward Improved Long-Term Characterization of AVHRR Thermal Bands

Recently, the National Oceanic and Atmospheric Administration (NOAA) performed sea surface temperature (SST) reanalysis (RAN1) from seven AVHRR/3s onboard NOAA-15 to -19 and Metop-A and -B, from 2002–present. Operational L1b data were used as input. The time series of clear-sky ocean brightness temperatures (BTs) and derived SSTs were found to be unstable. The SSTs were empirically stabilized a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002